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Abstract

In this study, an iterative method is developed in order to analyze the plates on a two-parameter elastic
foundation, based on the study by Vallabhan et al. (1991), where the material properties of the soil are used
in order to compute the coefficients of subgrade reactions, for the layered soil medium. In the analysis, the
finite element method is used, both plate and surrounding soil area divided into finite elements. The plate
finite element is considered by including the effects of subgrade reactions. By means of the method suggested
herein, it is possible to examine the interaction between the separate plates close to each other and to assume
the plate of arbitrary shape. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is known that the shear parameter effect is used in addition to the Winkler coefficient for the
analysis of a one-dimensional beam and two-dimensional foundation plate on a two-parameter
elastic foundation. Comparing the similar models (Filonenko-Borodich, Pasternak), the model
developed by Vlasov and Leontev has the advantage of determining the soil parameters depending
on soil material properties and the thickness of the compressible layer. Karamanlidis and Prakash
(1988) gave the stiffness and the mass matrix for beams which have four degrees-of-freedom, on a
two-parameter elastic foundation by using cubic Hermitian polynomials as trial functions in shape
function. Razaqpur and Shah (1991) derived a new finite element, where the stiffness matrix, the
nodal load vector and the shape function of the element are derived by using the differential
equation of a beam on a two-parameter foundation. Nogami and O’Neil (1985) suggested that the
vertical displacements can be expressed with a series of displacement shapes which are harmonically
varying in depth. Nogami and Lam (1987) developed a two-parameter model for slabs on elastic
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foundations, where the foundation layer is divided into a number of horizontal layers. Here each
layer is idealized by a system of multiple one-dimensional vertical columns interconnected by shear
springs. The elastic beddings and the shear parameter coefficients are obtained by using elastic
constants and the depth of the foundation.

Vallabhan and Das (1988) developed an iterative procedure to obtain a mode shape parameter
by minimizing the total potential energy, where the elastic constants of the beam and the mode of
loading are used as a function in addition to the thickness of the compressible layer and the elastic
constants of the foundation. They also determined the elastic bedding and shear parameter
coefficients. Vallabhan and Das (1991) developed a new model, where the elastic properties of the
layer vary linearly with depth. Jones and Xenophontos (1977) expressed the elastic bedding and
shear parameter coefficients depending on a mode shape parameter, reciprocally a mode shape
parameter depending on the displacement shape of the top of the soil. They used variational
principles and the mode shape parameter was obtained by experimental investigation instead of
an iterative procedure.

Vallabhan et al. (1991) extended their model for the analysis of plates on an elastic foundation
as is summarized below.

2. Governing equations and the expressions for plates on an elastic foundation

The lateral displacements in the soil can be assumed to be negligible compared to the dis-
placement in the vertical direction. The displacement in the vertical direction was assumed to be

w. = w(x, y)¢(2) &

where w(x, y) is the deflection of the soil surface and ¢(z) is the mode shape function defining the
variation of the vertical displacement in the vertical direction, having the boundary condition

pz=0)=1, dz=H) =0 )

where H is the thickness of the compressible layer supposed to be known. By minimizing the total
potential energy function under the variation of w(x, y), the following equation is obtained in the
domain of the plate

DAAw—2C;Aw+Cw = ¢q 3)
and outside the domain of the plate
—2C;Aw+Cw =0 “)

where D is the flexural rigidity of the plate [D = (Eph*/12(1 —v?))], ¢ is the external load on the plate.
By minimizing the total potential energy function by ¢(z) in the domain of the soil (0 < z < H), the
function ¢(z) can be expressed as

_sinh [p(1—z/H)]
B sinh y

d(2) )

where y denotes the mode shape parameter. The elastic bedding coefficient C and the shear
parameter coefficient 2Cy can be obtained as follows, depending on the mode shape parameter y:
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. E(1—v) i [sinh 2y + 2y]
~ (I4+v)(1=2v) H  4sinh*y
H [sinh 2y —2y]
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! 7 4sinh?y e

(6)

where E,, v,, G are the elastic constants of the soil. The mode shape parameter vy yields as follows:

o Lo (faw(x, )\ [ow(x,p) )
2_H2 (1_2\)5) ijm {( 0x ) +< ay > }dxdy

Y= o
2(1—v,) J J W2 (x, ) dx dy

— 0 — 0

(8)

As it can be seen in these expressions C and 2C depend on the material properties, the thickness
of the compressible layer of the soil and the coefficient y. On the other hand, y depends on the
deflection shape of the system, subjected to the external loads. It can be evaluated after determining
w(x, y) which satisfies eqn (3) inside the domain of the plate and eqn (4) outside the domain of the
plate. It is obvious, that for computing the parameter y the iterative method has to be used in
which y is initially set, for example equal to unity and it is also used in the computations of the
coefficients of subgrade reaction C and 2Cr. Thus, the deformed shape of the foundation can be
obtained. Then, v is calculated using eqn (8) and the procedure is repeated until the difference
between the two successive values of y will be less than a small prescribed value. In this study it is
observed that the iteration process converges more rapidly for uniformly distributed load cases
(e.g. 5-6 steps) compared to the concentrated load cases (e.g. 10—12 steps).

Vallabhan et al. (1991) considered in a similar way to that of Vlasov and Leont’ev (1966), the
reactions of the foundation along the edge of the plate by using a simplified assumption and by
defining equivalent springs along the boundary of the rectangular plate. Vallabhan and Das (1991)
also extended their model for the analysis of axisymmetric circular tank foundations. Vallabhan
and Daloglu (1997) employed the finite element method, instead of the finite difference method.
Four-noded rectangular finite elements with 12 degrees-of-freedom are developed to model the
slab and the soil along with four degrees-of-freedom elements for the beams that stiffen the slab.
The stiffness coeflicients representing the effects of the infinite soil continuum outside the domain
of the soil are determined in a similar way to that of Vallabhan et al. (1991). When the plate does
not have a simple rectangular shape or when it has holes, the soil reactions along the inside and
the concave edges have to be taken into account by different equivalent spring formulations (Fig.
1).

In this study, the deflections of the soil surface around the plate are considered as well as those
under the plate. The deflections of the surface around the plate are obtained by dividing this area
into soil finite elements of two dimensions. However, as it is shown by the first author (Celik,
1996) for practical purposes, it is quite enough to consider a limited soil region around the
periphery of the plate, instead of the whole soil surface extending to infinity. It appears from the
evaluated examples that the extent of this region can be as the thickness of the compressible layer
H of the soil (Fig. 2(b)). Thus, the vertical displacement at the edge of the soil surface can be
obtained up to the accuracy of 2-3% along the edge of the plate. The interaction effects between
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Fig. 1. Plates on the foundation.
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Fig. 2. (a) The plates, (b) the surrounding soil.
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the separate plates close to each other can also be analyzed easily, by using the considered finite
element idealization.

3. Plate finite elements including the effects of a two-parameter soil

It is known that the distributed soil reaction, which depends on the displacements of soil surface,
is expressed as

)

’w 0w
q. = Cw—2Cr

_l’_ -
ox?  0y?

The shear forces along the boundaries depend on the vertical slope (0w/dn) and they are
proportional to the shear parameter as shown in Fig. 3.

Fig. 3. Soil reactions.

0
T, = —2G; (;:) (10)

As it is well-known, in the finite element method, the displacement shape of an element can be
expressed depending on nodal freedom of the element as follows:

n

w(x, ) = Y wi(x,y)d, (11)

i=1

and every equivalent nodal force of distributed loads can be calculated as the total work done by
the distributed loads with the corresponding unit displacement shape. Each equivalent nodal force
of soil reactions can be expressed as:

P = _”qzwi dA+§TnWi ds (12)
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Fig. 4. Soil reactions on a rectangular plate finite element.

Thus, substituting eqn (9) and eqn (10) into eqn (12) the equivalent nodal forces of soil reactions
for a rectangular plate element (Fig. 4) are expressed as

w  *w
PSi El _C WIW dA+2CT Wi - + 5 dA
ox*  0y?
ow ow
0x x=(a/2) 0x ) _ —(a/2)
0 0
—2C; Jwi <W> dx+2C; le. <W> dx (13)
W )y= W )y= w2

Partial integration of the second term gives:

0*w ow ow ow; ow
2Cr | |w,——=dA4 =2Cr | | W, dx—2Cr | | W= dx—2Cr —dA
axz ax x=1(a/2) ax x= —(a/2) ax ax

(14a)

0* 0 0 ow; 0
2Cy JJW"V;dA =2Cy J(Wi W) dy—2Cr J\<Wi W> —2Ct JJ i 7WdA
ay ay y=(b/2) ay y= —(b/2)

dy 0y

(14b)
by rearranging (13)
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ow, 0w Ow; 0w
P,=—C||wwdd—-2C; Oy ox + 3y @ dA (15)

is obtained.

Although eqn (15) is obtained for a plate of rectangular shape, it can be generalized for any
element shape by using Green’s theorem. Substituting eqn (11) into eqn (15) and setting the terms
depending on soil reactions on the left side, the equilibrium equation for any nodal freedom of a
plate element can be written as follows:

Y kydi+ Y, Cydi+ ), Cryd; = P, (16)
j=1 = j=1
where
C, = C[fww,dA (17)
ow; Ow;  Ow; 0w,
CT,-,,-—ch”{ax et ay}dA (18)

and k; and P, are the standard terms of a stiffness matrix dealing with the flexural rigidity of the
plate and the equivalent nodal force due to external loads, respectively.
Equation (16) can be written for the whole freedom of the element in matrix form:

[K][d] + [C[d] + [Cr][d] = [P] (19)

4. The elastic bedding |C] and shear parameter |C;| matrices of rectangular plate elements
having 16 and 12 degrees-of-freedom

Using eqns (17) and (18), the term of subgrade reaction matrices [C] and [Cy] of the soil have
been computed for Bogner et al. (1966) (for 16 degrees-of-freedom) finite element and Adini and
Clough (1961) (for 12 degrees-of-freedom) finite element are given in Appendices 1 and 2.

5. Finite element idealization of a surrounding soil area

As is seen in eqn (4), where no external loads are presented, the behavior of a soil finite element,
which will be used for the idealization of the surrounding soil area, can be defined as a shear plate
element. It has an elastic bedding coefficient C and a shear rigidity Gh" = 2Cr. A linear variation
of the vertical displacement in both directions is assumed for the soil finite element by using the
above analogy. Thus, the displacement shape of the soil finite element can be defined as

w = Zw;d; = [Aq];[d] (20)

where [d] denotes the vertical nodal displacements of the soil finite element and [A4], is the shape
function of the shear plate element. When the number of soil finite elements increase in the soil
medium, the excessive increasing of the nodal parameter can be prevented by choosing only vertical
displacement in the soil finite element. The difficulties that may arise from requiring the slope
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Fig. 5. Rectangular soil finite element.

continuity condition on the edges where the plate finite elements combine with the soil finite
elements, are prevented. By using the same procedure adopted for plate elements, the relation
between the nodal forces and the displacements of the soil element can be expressed as

[Cl[d] +[Cr]ld] = [P] 2D

where [C] and [Cy] are the elastic bedding and shear effect matrices of the soil medium. The terms
of these matrices can be computed by eqns (17) and (18).

6. Rectangular soil finite element have four degrees-of-freedom

The considered rectangular soil finite element is shown in Fig. 5. The deformed shape can be
defined as given in eqns (20) and (22) where [A4], is obtained by multiplying the linear shape
function in both directions.

[Aals = [ L) L)L) LWLE) L)L ()] (22)
The linear functions are given as:

L(x) = (0.5—x/a) I, (x)=(0.5+x/a)

L(y) = (0.5—y/b) 1,(y) =(0.5+y/b) (23)

The terms of the elastic bedding and the shear parameter matrix, which are obtained by using
eqns (17) and (18), are given in eqns (24) and (25).
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3 B/2—a —(x+p)/2 o+ o/2—p
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where o = (a/b), p = (b/a).
By using the stress—displacement relationship, the shear forces within the soil element can be
obtained as follows:

T,
[ ~}=2CT o | [Aakld] (26)

oy

7. Computation of the mode shape parameter (y)

During the iterative method explained above, the new mode shape parameter y has to be obtained
by using eqn (8), after determining the deformed shape w(x, y) of the system. The integral terms
of eqn (8) can be evaluated for every plate and the soil finite element separately. They are extended
to the whole system by taking the summation of each element’s contribution.

The deformed shape and its partial derivatives with respect to variable x and y within an element
can be given as

i=1
aw 8w " (ow; 0w
6x ; ( dy > d (28)

where the nodal freedoms of the element are known. Hence, the integral terms of an element

[t (5 m0)(528)o1- 5. (]
L o ) 2 B G oo

can be calculated using the [C] and [C;] matrices which are already found.
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The effects of all the other elements can be summed up for the whole system, as follows:

(o [ 1
j w?dxdy =Y - [d"[C)ld

J—®0 J—0 el

(= [~ ow\®  [ow\? 1 .
Jow J_x [(0)6) +<0y> }dXdy = ;26} [d]"[C+][d]

(31)

(32)

(33)

(34)

As a result, the mode shape parameter can be obtained by using the above relations without

requiring any additional algorithm.

8. Numerical Example 1

In order to check the accuracy of this method; a plate on a two-parameter foundation is
considered. This plate problem was solved by Vallabhan et al. (1991), for a uniformly distributed
(Fig. 6(a)) and a concentrated (Fig. 6(b)) load, for various depths of soil stratum by using the
finite difference method. The same problem is analyzed by using the presented method and the
displacements, soil coefficients, mode shape parameters and the bending moments are obtained

and presented in Tables 1 and 2.

The elastic constants of the soil: E; = 68,950 kN/m?, v, = 0.25.
The elastic constants of the plate: E, = 20,685,000 kN/m? v, = 0.20.

The thickness of the plate is 0.1524 m, the dimensions are (9.144 x 12.192 m).

P=133.34kN
q=23.94 kN/m? ¢

H H

(a) (b)
Fig. 6. (a) Uniformly distributed load, (b) concentrated load.



M. Celik, A. Saygun/International Journal of Solids and Structures 36 (1999) 2891-2915 2901

Table 1
The uniformly distributed load

H (m) Ref. C (kN/m?) Cr (kN/m) Y v (cm) M, (kN m/m)
3.048 V.S.D. 27,206 13,452 0.5724 0.0872 0.0529
P. study 27,192 13,413 0.5766 0.0853 0.0445
6.096 V.S.D. 13,757 25,141 0.9297 0.1524 0.3113
P. study 13,757 25,205 0.9194 0.1526 0.2880
9.144 V.S.D. 9430 34,753 1.2644 0.1890 0.4224
P. study 9377 35,293 1.2064 0.1893 0.4109
15.24 V.S.D. 6366 47,366 1.9419 0.2070 0.4892
P. study 5964 52,332 1.6193 0.2212 0.4671
Table 2

The concentrated load

H (m) Ref. C (kN/m?) Cr (kN/m) y v (cm) M, (kN m/m)
3.048 V.S.D. 31,610 9565 1.9018 0.0480 12.544
P. study 31,898 9456 1.9478 0.0818 15.047
6.096 V.S.D. 23,918 11,959 3.4737 0.0975 12.544
P. study 24,256 11,798 3.5249 0.0845 14.563
9.144 V.S.D. 23,376 12,193 5.1669 0.0975 12.544
P. study 23,737 12,017 5.2434 0.0846 14.510
15.24 V.S.D. 23,350 12,205 8.6079 0.0975 12.544
P. study 23,710 12,030 8.7369 0.0846 14.510

The finite element idealization presented in Fig. 7 is used. Due to the symmetry of the problem,
only a quarter of the whole system domain is considered. The full compatible 16 degrees-of-
freedom elements are used for the idealization of the plate. Thus, with 42 nodal points each having
four nodal degrees-of-freedom and 214 nodal points have one nodal degree-of-freedom, the total
number of unknowns considered in the computations are 382.

From the comparisons of Table 1 and 2 one may observe that the results are in agreement with
each other. The relative errors on y are 0.015 at the third step, less than 0.001 at the fourth step
for a uniformly distributed load and 0.017 at the sixth step, less than 0.001 at the ninth step for a
concentrated load, when the thickness of a compressible layer is 15.24 m. The iteration process on
y converges more rapidly when H decreases, or the bending stiffness of the plate increases.

9. Numerical Example 2

The foundation plate, under a vertical column load, shown in Fig. 8(a), is analyzed for different
values of plate thickness and compressible layer thickness of the soil. The effects of the above
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Fig. 7. Finite element idealization.

variables on the mode shape parameter and the soil coefficients are evaluated. The variation of
moments at the cross-section are obtained depending on the deflection shape of the plate. The soil
finite elements are used in addition to the 16 degrees-of-freedom plate finite element, which includes
shear deformations (Celik, 1996). The width of the soil region is assumed to be greater than the
thickness of the compressible layer of the soil. The plate and the soil finite element meshes are
shown in Fig. 8(b), where the symmetry condition of the problem is considered.

The elastic constant of the foundation plate: E, = 2.10” kN/m?, v, = 0.16.
The elastic constant of the soil: E, = 80,000 kN/m?, v, = 0.125.

The values of ‘@’ which are shown in Fig. 8(b) depending on the thickness of the compressible
layer of the soil, are given below:

forH=5m,a=0.6m
for H=10m,a=09m
forH=20m,a=18m

The value of the mode shape parameter and the soil coefficients are shown in Table 3 for different
values of plate thickness and the thickness of compressible layers of the soil.

The variation of the vertical displacements and the bending moments are shown for the plate
thickness of 42 = 0.6 m along different axes. The foundation plate is solved as a plate settled on the
Winkler soil by use of the elastic bedding coefficient, C, found for a layer thickness of 10 m and
the results (1) are plotted on the same diagrams.

From the comparison of the results, it can be seen that the settlement and the internal forces
distribution in the foundation plate change seriously, by taking into account the shear parameter
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Fig. 8. (a) Foundation plate, (b) finite element idealization.
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Table 3
h=0.6m h=0.8m
H (m) Y C (kN/m’) Cr (kN/m) y C (kN/m’) Cr (kN/m)
5 1.118 19,733.44 22,901.50 1.001 19,557.70 23,552.10
10 1.327 10,087.80 43,348.10 1.256 10,002.31 44,202.00
20 1.894 5572.80 73,214.50 1.821 5484.70 74,928.20
0.00 1.00 2.20 3.40 4.60 5.80 10.80 15.80 20.80 25.80
0.00 -ttt b b e o]
3.00 TS STmT— = ,/:4’_" m
600 LTl IS ST —
9.00 = —— —H=5m
12.00 2 U H=10 m
1500 _ | e m— e — - ~
18.00 ~. —-—-H=20m
21.00 ~.. — - - —H=10 m (W)
24.00 N -
27.00 ' mm
Fig. 9. Vertical displacements (along x = 5.8 m axis).
000 040 100 160 220 280 340 400 460 520 5.80
-60000 1
-450.00 et T T -
-300.00 D — Th e . m
-150.00 f e m T iITII Il I m—m S
0.00 s T TTEIET e
300.00 2 P H=10
=7 ek
%
' — - - — H=10 m (W)
kNm/m
Fig. 10. Bending moment M, (along x = 5.8 m axis).
0.00 1.00 2.20 3.40 4.60 5.80 10.80 1580 20.80 25.80
0.00 - et A e ¢ o]
. /' . " . - -
3.00 - e V-
T T T T T T ~~__%
6.00 T T e .
..--'__'_'..-_._’___.—-—-—-_-.7
900 Z I -—-"" Tt~ — ——H=5m
~ -—
12.00 N EEEE L H=10 m
N —-—-H=20m
15.00 t — - - — H=10 m (W)
18.00 ' mm

Fig. 11. Vertical displacements (along x = 0.0 m axis).
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Fig. 13. Vertical displacements (along x = 2.8 m axis).
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Fig. 14. Bending moment M, (along x = 2.8 m axis).
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according to the Winkler assumption and also it is observed that the settlement and soil stress
accumulation under the loads on the boundaries and on the corners are decreased. Besides that
the decreasing of the side span bending moments and a small increase of the bending moments
under concentrated loads are also noticed.

10. Numerical Example

3

The interaction between plates which are close to each other, can change the soil coefficients as
well as the internal moments which depend on the deflection shape of the plate. For this reason,
asitis seen in Fig. 15(a) the two foundation plates, both similar to the ones considered in Example
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Fig. 15. (a) Foundation plates, (b) finite element idealization.
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Table 4
h=0.6m h=08m
H (m) y C (kKN/m?) Cr (kN/m) Y C (kKN/m?) Cr (kN/m)
5 1.066 19,650.30 23,191.60 0.950 19,495.00 23,826.80
10 1.160 9904.00 45,324.60 1.089 9842.60 46,133.20
20 1.514 5179.50 82,225.10 1.454 5132.05 83,661.50
0.00 240 480 720 920 11.60 14.00 24.00 34.00
0.00 ‘t‘%w' ettt "}\llfiltvw‘w\“%»v}M‘l\l}!li}‘.dxuuhi‘
1.50 : I//’/ - m
3.00 % - o 1
450 E // \\_______// \\//, — = — H=5m
6.00 RN —em =~y ===
7'50 S T~ _ Lz H=10m
©9.00 Prae - —-—-H=20m
10.50 =
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Fig. 16. Vertical displacements (along y = 2.4 m axis).
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Fig. 17. Bending moments M, (along y = 2.4 m axis).

2 are spaced 4.8 m apart. The mode shape parameter and the soil coefficients are obtained and
given in Table 4. The finite element meshes are shown in Fig. 15(b) by using the symmetry condition
of the plate geometry.

It is seen that in Tables 3 and 4 the mode shape parameter and the elastic bedding coefficient
increase and the shear parameter coeflicient decreases as compared to the single foundation plate.
Also the vertical displacements and the bending moments are shown for the plate thickness of
h = 0.6 m along the different axes.
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Fig. 18. Vertical displacements (along x = 0.0 m axis).
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Fig. 20. Vertical displacements (along x = 5.8 m axis).
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Fig. 21. Bending moments M, (along x = 5.8 m axis).

From the comparison of the results obtained from the second and the third examples it is
observed that, when the distance between the foundations are getting smaller than the thickness of
the compressible foundation layer, the interaction becomes important and the vertical displacement
increases, however, the transverse shear force decreases around the close boundaries. Whereas,
when the distance between the foundations gets bigger than the thickness of the compressible
foundation layer, the interaction becomes negligible.

11. Conclusion

In this study an iterative method is developed in order to analyze the plate on the two-parameter
foundation where the soil finite elements are used in addition to the plate finite elements, so that
the displacements for the plate—soil system, the bending and the twisting moments for the plate
and the shear stresses of the soil can be computed. Also the elastic bedding coefficients and the
shear parameter coefficients can be obtained by using the elastic constants, the thickness of the
compressible layer and the mode shape parameter. Due to the character of the problem, the mode
shape parameter depends on the dimensions of the plate load case and the mode shape of the soil
surface. Further numerical results can be found in Celik (1996), where the extension of the
presented method to circular plates on a two-parameter elastic foundation is also developed. The
extension of the model to include buckling and vibration of the plate on the elastic foundation is
also possible.

Appendix 1: Elastic bedding and shear parameter matrices of a fully compatible plate finite
element

The numbering and sign convention of the nodal displacements are shown in Fig. 22. The elastic
bedding and shear parameter matrices can be partitioned into submatrices, which have dimensions
of 4 x4
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-l
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Fig. 22. 16 degrees-of-freedom plate element.

a

12 [C]13 [C]14 CT]]Z

CT]13

[Cl [C] [ [ [ [Crlia
21 22 23 24 CT 21 CT 22 CT 23 CT 24
(€] = [Cli [Cla [Cls [C] ()] = [Crlar [Crlaz [Crlas [GH] (35)
[C]3l [C]32 [C]33 [C]34 [CT]31 [CT]32 [CT]33 [CT]34
[C]4l [C]42 [C]43 [C]44 [CT]41 [CT]42 [CT]43 [CT]44

where the matrices [C]; and [Cy];, represent the nodal forces at i nodal point due to the unit
displacements at j nodal point. From Betty’s law, it follows:

[Cli = [Cla» | 5: [C]; and [Crli = [Crlis [CT]zT/ = [Crly (36)

Also by the use of symmetry of the rectangular plate and considering that the nodal forces due to
symmetric displacements are symmetric, it yields:

[Clox = [TICI(T)]  [Crlax = [T,[Cr] i [T]
[Clos = [T[CLaIT)]  [Crlas = [T[C]14(T,]
[Clos = [T[Cl:(T]  [Crlos = [T[C]15(T]
[Clss = [TICTL(T] [Crlss = [TW[C]00 (T3]
[Clss = [T ][C]11[T.]  [Crlsa = [TW[Cr]12[T]
[Claa = [TLUTICIGTIT] [Crlas = [TUTACH]G [TWIT)] (37

where [T] and [7] are diagonal transformation matrices given below:
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1 0 0 0 1 0 0 0

(7] = 0 -1 0 0 (] = 0 1 0 0 (38)
* 0 0 1 0 ! 0 0 —1 0
0 0 0 —1 0 0 0 —1

From the above relations, the complete elastic bedding and the shear parameter matrices can be
obtained from the submatrices [C],;, [Clis, [Clis and [Clya, [Crlits [Crlizs [Crlis and [Cr]4. These
matrices are given as follows:

Elastic bedding submatrix of a full compatible finite element

i 143 143 121 |
143 13 121 2
cab | 60 3 Tae e T3
Tms e o 2
6 ¢ T 36" 3¢ 36
121 2 2 a*b?
gab —%ab %ab 9
s B, 1o 14 ]
T4 ¢ T n“
33 . 143 13
Cab 2 b 1.5b 7 ab 36ab
AT e B, 1,
¢ T 49 T
143 13 11 a2b?
E T L YL,
I 42.25a 71.5ab |
58.5 ; 825 —
42.25b . 715ab  16.5ab?
_ IS 305p -
Cab 3 36 36
[ =125 05 T.Sab 13a%b
. [4) 36 oda — 36
71.5ab  16.5ab>  13d%b 0.754°b°
36 36 36 9
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2912
- 42.25ab |
20.25 4.875b —4.875a 36
42.25ab 9.75ab*
—4. —1.125b% —
Cab 875b 5b 36 36
[ = 1225 4875 42.25ab 195, 9.75a%b
.875a 36 —1.125a 36
42.25ab  9.75ab’ 9.75a°b  2.25a*b*
36 36 36 36
Shear parameter submatrix of a full compatible element
_ . -
156(x+p) —Q22+130)b (2204 13f)a Z(oc—l—ﬁ)ab
52 11 22
4B+ —o |b* ——(a+pPab — E—Ffoc ab?
2C; 3 6 39
[Celi = 355 . ’
bt 2B\ (2458 ab
3 39
. 4
symmetric §(<x +p)a*b’
r 11 13
54— 156f (22p—4.50)b —13(@—p)a <6ﬁ— 12a> ab
13 13
(22p—4.50)b — (4p—60)b* <—/3+a ab —<ﬂ—cx ab®
2C; 6 12 39
[CT]IZ =
330 13 E E b 3 E 2 g E 2h
(x—p)a ¢ P )a — | 3o+ 3ﬂ a — 4—1-18/3 a
113 Bo13 N\ a 11\, B\,
_—<6ﬁ—12a>ab <3—9cx>ab —<4—|—18[3>ab —<9+3 ab
i 11 13 ]
545 — 1560 13(f—a)b —(220—4.5b)a <6a—12ﬁ>ab
13 11 13 s 11 5
2 13(c— )b —<3ﬁ+ 3 oc)b <6 o— 12[3>ab <4 + 18a>ab
[Crlis =725
P s DorBp)ar  —da—opa (- 2p)a
—(22a—4.5p)a — 6oc L —(4a—6p)a 3179 a
11 13 p11 5 a 13\, B\, .,
_—<6a—12ﬁ>ab <4+18a>ab —<3—9ﬁ>ab —<3+9 ab |
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20,
[Celie = 350

50

—54(a+p)

(138 +4.50)b

—(13B+4.50)b

(38— 1.50)b>

(1304 4.5B)a

13 b
- ﬁ(ochﬂ)a

- %(oc—l—ﬁ)ab <§ — 13a> ab®

— (130 +4.5p)a —g(a—i-ﬁ)ab

(30(-1.5[3)612 _<4_36

1

)azb

2913

13 13 3 1
- E(oc—l—ﬁ)ab - <§ - 36oc> ab’ (Z - 36ﬂ> a’b E(oc—kﬁ)azbz

Appendix 2: Elastic bedding and shear parameter matrices of a plate finite element having 12
degrees-of-freedom

The numbering and sign convention of nodal displacements are shown in Fig. 23. The elastic
bedding and shear parameter matrices can be partitioned into submatrices, which have dimension
of 3 x 3 as (34).

The equalities (36) and (37) of Appendix 1 remain entirely valid where the diagonal trans-
formation matrices must be changed as;

1 0 0 1 0 0
[T1=|0 —1 0| [T,J=]0 1 0 (39)
0 0 1 0 0 —1

Thus, the complete elastic bedding and the shear parameter matrices can be obtained from the
submatrices [C],, [C],, [Cli3 and [Clys, [Crliis [Crlias [Crlis and [Co]js. These matrices are given
as follows:

dg dge
®/ ds @/Jiu
s dlo
d, . y b/2
X
d, z(W) gl b2
6
@ > >
l d, l@ ds
d, d
N 4
| = -
a/? a/?

Fig. 23. 12 degrees-of-freedom plate element.
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Elastic bedding submatrix of a finite element having 12 degrees-of-freedom

T 3454 —461b  46la
(1, = 22;30 80h>  —63ab
| symmetric 80a?
r 1226 —199b —274a7
[C],» = 22621?)() — 1996  40b* 42ab
| 274a —42ab —60a* |
r 1226 274b 199a 1
[C]s = 2;6211)00 —274b  —60b> —42ab
| 199a 42ab 40a° |
r 394 1166 —116a7
[Clis = 256:6211700 —116b —30b*> 28ab
| 116a 28ab  —304* |
Shear parameter submatrix of an element having 12 degrees-of-freedom
r R2@+p) —1A1+T0)b  (11f+Ta)a
[Cilys = zzlcg (—2B+Z )b’ 0
L symmetric 0 Qo* +% B)a’
r 340—92p (11—=3.50)b —(6.50—7p)a
(il :221% (11p—3.500b (—2p+"ayp? 0
L (6.52—7p)a 0 —(1.502 +)a?
r —920+34p 6.5p—T0)b  —(1150—3.56)a
[Cilys = zzlcg —(6.58—T0)b  —(1.5p+1a)b? 0
L —(1152—3.58)a 0 (—2u+% p)a?
r o —34(x+p) —(6.5+3.50)b (6.50+3.5p)a
(Colis = 221C5 6.56+3.50b (156~ a)b? 0
L —(6.50+3.58)a 0 (1.50> ! p)a’
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